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Effective theory of high-temperature superconductors

Igor F. Herbut
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

General field theory of a fluctuating d-wave superconductor is constructed and considered as an
effective description of superconducting cuprates at low energies. When dualized, it becomes related
to the SU(2) gauge formulation of the t-J model. The theory is applied to recent experimental puzzles
on superfluid density and thermal conductivity in severely underdoped YBCO. In particular, the
temperature dependence of the superfluid density at low dopings is predicted to approach the form
of the condensate in the strongly anisotropic three-dimensional Bose gas, in qualitative agreement
with experiment.

The superconducting state of underdoped high-
temperature superconductors is long known to be anoma-
lous. Whereas the pseudogap temperature T ∗ is high,
and only increasing with underdoping [1], the supercon-
ducting transition temperature Tc, together with the zero
temperature superfluid density ρ(0) at the same time is
continuously vanishing [2]. This is in dramatic contra-
diction with the predictions of the standard BCS theory,
in which of course Tc and T ∗ would be essentially iden-
tical, and ρ(0) proportional to the electron density, i. e.
ρ(0) ∼ 1 − x, where x is the number of holes per lattice
site (doping). It has recently been argued [3], [4], that
when pairing in the d-wave channel is accompanied by
strong repulsion the amplitude of the order parameter |∆|
and ρ(0) at the variational superconducting ground state
behave oppositely as half filling (x = 0) is approached,
with the divorce of T ∗ and Tc arising as a natural conse-
quence. Disordering of the d-wave superconductor (dSC)
by quantum fluctuations thus appears, at least in this
respect, to be similar to doping of holes into the Mott
insulator as described by the effective gauge theories of
the t-J model [5].

There exist, however, experimental results that are dif-
ficult to understand within the theory of the fluctuat-
ing dSC [6], [7], or the gauge theory of the t-J model.
Whereas these approaches correctly yield ρ(0) ∼ x as has
been seen, they also generally imply dρ(T )/dT |T→0 ∼ x2

[8], which has not [9]. In fact, the latest experiments in
strongly underdoped single crystals [10] and thin films
[11] of Y Ba2Cu3O6+x (YBCO) show the superfluid den-
sity to be approximately linear in temperature all the way
to Tc, with a rather weakly doping-dependent slope, and
with a higher power-law emerging near T = 0. These re-
sults appear additionally puzzling when juxtaposed to
the recent measurements of heat transport in YBCO
[12], which suggest that sharp gapless quasiparticles sur-
vive the process of underdoping, but become insensitive
to external magnetic field. This may be understood as
that quasiparticles lose their ‘charge’ with underdoping,
which then, however, would also seem to imply the above
strongly doping-dependent slope of ρ(T ), in stark con-
trast with observation.

In this letter I present the field theory of the quantum-
fluctuating d-wave superconductor (dSC), in which nodal
quasiparticles are coupled to the phase fluctuations of the

order parameter. Quantum fluctuations may in principle
arise from Coulomb interaction, the detrimental effect
of which on the phase coherence increases near a com-
mensurate filling [3], [4]. Such an effective theory should
provide a correct description at energies much below the
larger of |∆| and ρ(0). First, I point out that this rather
general field theory of the fluctuating dSC may be trans-
formed into a form that is intimately related to the effec-
tive SU(2) gauge theory of the t-J model [13]. Somewhat
similar connection between the U(1) gauge theory of the
t-J model and the dSC with topologically trivial phase
fluctuations [14] has already been noted [15], [16]. Sec-
ond, I consider the superfluid density ρ(T ), and show
that the region of temperatures (relative to Tc) where its
slope would become too strongly doping-dependent as de-
scribed above actually vanishes as x→ 0. To the leading
order in doping, the overall form of ρ(T ) in the system of
Josephson-coupled superconducting layers is given by the
condensate of the non-interacting Bose gas. This, in par-
ticular, would explain why the reduction of the critical
region near Tc and the appearance of the higher power-
law at low T in ρ(T ) occur together with underdoping
[10], [11]. On the other hand, underdoping is shown to
indeed be gradually decoupling an external magnetic field
from quasiparticles, until it becomes completely decou-
pled in the insulating phase.

The action for the low-energy quasiparticles of a two-
dimensional (2D) phase-fluctuating dSC may be written

as S =
∫ 1/T

0 dτ
∫

d2~xL, with the Lagrangian density L =
LΨ + LΦ, and

LΨ = Ψ̄1[γ0(∂τ − ia0) + vF γ1(∂x − iax) + (1)

v∆γ2(∂y − iay)]Ψ1 + (1 → 2, x↔ y) + iJµ(vµ +Aµ),

LΦ =
i

θ
ǫµνρ(aµ, vµ)∂ν(A

−

ρ , A
+
ρ )T +

Kµ

2
(vµ +Aµ)

2 (2)

+
h

θ
ǫ0µν∂µA

+
ν +

1

2

2
∑

n=1

|(∂µ − i(A+
µ + (−)nA−

µ ))Φn|2

+α̃

2
∑

n=1

|Φn|2 +
β̃1

2
(

2
∑

n=1

|Φn|2)2 +
β̃2

2

2
∑

n=1

|Φn|4.

Two (NΨ = 2) four-component fermionic fields Ψ1,2 de-
scribe the gapless, electrically neutral, spin-1/2 excita-
tions near the two pairs of diagonally opposed nodes.
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vF and v∆ ∼ |∆| are the two characteristic velocities of
the low-energy spectrum, {γµ, γν} = 2δµν , and Jµ and
Ψ̄nγµΨn, µ = 0, 1, 2 are the charge and spin currents,
respectively, as defined in [6]. Whereas the Fermi veloc-
ity vF may be assumed to be approximately independent
of x, v∆ should be a decreasing function of doping [1],
[3], [4]. aµ and vµ are the Berry and the Doppler U(1)
fields that couple quasiparticles to vortex-loop configu-
rations of the fluctuating phase of the order parameter;
the integration over the auxiliary gauge fields A±

µ con-
strains ǫµνρ∂ν(aρ, vρ) = θ(JΦ1

− JΦ2
, JΦ1

+ JΦ2
)µ, where

JΦ1,2
are the vortex current densities, and θ = π. Com-

plex fields Φ1,2 therefore describe vortex loops of unit
vorticity whose phases are attached to spin up and down
electrons by the Franz-Tešanović transformation [7]. K0

and K1,2 = K ∼ EF ∼ 1−x are the bare compressibility
and the bare superfluid density, respectively, which de-
rive from the integration over the high-energy fermions.
Aµ is the physical electromagnetic vector potential, and
h is the bare chemical potential. The parameter α̃ tunes
quantum fluctuations, and β̃1,2 > 0 describe the short-
range repulsive interactions between vortex loops. Terms
that are irrelevant at low-energies [17] have been omit-
ted. I have also neglected the long-range nature of the
Coulomb interaction for reasons of simplicity.

At h = 0 LΦ represents the continuum limit of the
lattice theory derived in [6]. Chemical potential is in-
troduced by shifting A0 → A0 + ih, after which it is
absorbed into a redefined v0, as v0 + ih → v0. It then
appears only as the fictitious external ‘magnetic field’ in
the τ -direction in LΦ. The form of L may also be un-
derstood on the basis of symmetry: 1) the usual electro-
magnetic gauge symmetry under Aµ → Aµ+∂µχ, [14] 2)
the internal gauge symmetry under aµ → aµ + ∂µχ, [7],
[6] 3) the Ising symmetry under Φ1 ↔ Φ2, aµ ↔ −aµ,
spin up↔down, and 4) the gauge symmetry under A±

µ →
A±
µ + ∂µχ

±, together with the requirement of analytic-
ity in Φ1,2 dictate the form of L as unique to the lowest
non-trivial order in the fields and their derivatives.

The form of L may also be justified on purely phe-
nomenological grounds, since, as discussed below, it de-
scribes an interesting MI-dSC transition of possible rel-
evance to cuprates. It is convenient, however, to derive
the equivalent dual form of LΦ, more amenable at h 6= 0,
first. Duality is most precisely established on a lattice,
and for the ‘hard-spin’ version of the complex fields. Us-
ing the standard set of transformations [18] it is easy to
show that, modulo analytic terms,

∫

(
∏

x

dφxd ~Ax)e
∑

x

1

T
cos(∆φ−2 ~A)− i

θ
~a·∆× ~A = (3)

lim
t→0

∫

(
∏

x

dψx)e
∑

x

1

t
cos(∆ψ−π

θ
~a)− T

8θ2
(∆×~a)2 ,

where x labels the sites of the 2+1D quadratic lattice,
and ∆ and ∆× are the lattice gradient and the curl.
Taking the continuum limit and going into the ‘soft-spin’

representation [18], for θ = π this implies that,

LΦ =
Kµ

2
(vµ +Aµ)

2 + h

2
∑

n=1

b∗n(∂0 − i(v0 + (−)na0))bn(4)

+
1

2

2
∑

n=1

|(∂µ − i(vµ + (−)naµ))bn|2

+(α− h2

2
)

2
∑

n=1

|bn|2 +
β1

2
(

2
∑

n=1

|bn|2)2 +
β2

2

2
∑

n=1

|bn|4.

LΦ may therefore be alternatively understood as describ-
ing the coupling of the U(1) fields aµ and vµ to two non-

relativistic bosonic fields of unit electromagnetic charge,
which are dual to the original vortex fields Φ1,2. Eq. 4
would be equivalent to the conjectured effective theory
of the s-flux phase within the SU(2) gauge theory of the
t-J model [13], except for the appearance of the addi-
tional Doppler field vµ. It is more general, however, and
describes a fluctuating d-wave superconductor at low en-
ergies independently of its particular microscopic origin.

Consider the superconducting phase described by L.
Assuming α > 0, β1,2 > 0 and minimizing LΦ, for h >

hc =
√

2α one finds |〈b1〉|2 = |〈b2〉|2 = (h2 − h2
c)/2(2β1 +

β2). (Equivalently, for α̃ > 0 in Eq. 2, 〈Φ1〉 = 〈Φ2〉 = 0.)
To quadratic order LΦ then reduces as

LΦ → Kµ

2
(vµ +Aµ)

2 +
ρb(T )

2
(v2
µ + a2

µ − i2hv0), (5)

where ρb(T ) is the superfluid density of the bosons. Since
both U(1) fields are massive, nodal quasiparticles interact
only via short-range interactions, and therefore represent
well-defined low-energy excitations, conducting heat, for
example. Note that since the two bosonic species con-
dense equally the term linear in a0 cancels, and aµ and
vµ decouple. The latter implies that at low energies
L = Lsp +Lch, where the spin part of the Lagrangian to
the leading order is Lsp = LΨ− iJµ(vµ+Aµ)+ (ρb/2)a2

µ.
The former ensures that the fermionic spectrum has only
Fermi points and not a Fermi surface. This justifies a

posteriori why two complex fields in Eq. 4 (or Eq. 2)
were necessary to describe the dSC. Charge sector to the
leading order is

Lch = iJµ(v+A)µ+
Kµ

2
(v+A)2µ+

ρb(T )

2
(v2
µ−i2hv0). (6)

Since the charge current Jµ is a bilinear in Ψ [6], [14]
spin dynamics at low energies becomes independent of
the charge, but not vice versa. This partial ‘spin-charge
separation’ suffices, however, for the computation of the
spin response of the fluctuating dSC [19]. The focus here
will be on the charge response. Setting A0 = 0 and per-
forming the Gaussian integration over v0 one finds

Lch =
J2

0

2(K0 + ρb(T ))
− hρb(T )

K0 + ρb(T )
J0 + (7)

i ~J · (~v + ~A) +
K

2
(~v + ~A)2 +

ρb(T )

2
~v2,
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FIG. 1: The generic form of the superfluid density ρ(T ) =
ρb(T ) in the strongly underdoped regime in the theory L with
the Josephson coupling between the layers (see the text). The
parameters t = 0.5, h = 0, and ρb(0) = 11.8µm−2 are cho-
sen to roughly correspond to the underdoped single crystal of
YBCO with Tc ≈ 19K.

where ~X = (X1, X2). The first term describes a short-
range repulsion between fermions and as such is ir-
relevant at low energies. The second determines the
physical (renormalized) chemical potential: µ(T ) =
−hρb(T )/(K0+ρb(T )). Since x ∼ −µ(0), x ∼ ρb(0). The
rest of Lch determines the superfluid density. At T 6= 0,
the integration over the fermions reduces K in Eq. 7
as: K → K(T ) = K − (2 ln(2)/π)(vF /v∆)T + O(T 2).
Integrating finally ~v yields the total superfluid density:

ρ(T )−1 = K(T )−1 + ρb(T )−1. (8)

The last result, sometimes called the Ioffe-Larkin rule
[20], is easily seen to hold both in the underdoped (large
K), and in the overdoped regime (large ρb).

At T = 0, therefore, ρ(0) = Kρb(0)/(K + ρb(0)) ∼
x(1−x), which agrees with more microscopic calculations
[3], [4], and with experiment [2] at low x. At T 6= 0, how-
ever, ρb(0)−ρb(T ) ∝ T 3 in 2D [21], and the temperature
dependence of the second term in Eq. 8 is negligible at
low temperatures. This yields dρ(T )/dT ∼ (ρ(0)/K)2 ∼
x2 at low T , contrary to experiment. This is the issue I
wish to address next.

While the above reasoning for all practical purposes
suffices in 2D, as x → 0 in a (anisotropic) 3D sys-
tem like YBCO the temperature range over which it
applies quickly becomes negligible compared to Tc. To
see this, consider first the canonical, 4He-like, isotropic
system of 3D bosons with a mass m with a two-body
interaction V (~x) = λδ(~x). Dimensional analysis dic-
tates that the superfluid density may be written as
ρb = r−3G(mλ/r,mTr2), where r is the average distance
between particles, andG(x, y) a dimensionless function of
its two dimensionless arguments, with G(0, 0) = 1. Low
density regime is equivalent therefore to the weakly in-
teracting, high-temperature limit. There one may write
G ≈ 1 − (T/TBEC)3/2, where the leading term rep-
resents the temperature-dependent condensate of non-

interacting bosons, with TBEC being the Bose-Einstein
condensation temperature [22]. At low enough temper-
atures, of course, interactions alter the temperature be-
havior into ∼ T 4 (in 3D), but this is significant only
below the characteristic ‘quantum’ temperature scale
∆Tq ∼ (mλ/r)TBEC . Similar analysis shows that the
width of the critical region is ∆Tc ∼ (mλ/r)2Tc, and
therefore shrinks even faster than ∆Tq with diluting.
This is all just another way of phrasing the familiar irrele-

vancy of weak short-range interactions near the quantum
critical point of 3D non-relativistic bosons [23].

Cuprates are layered materials, and it seems reasonable
to assume that different superconducting layers (each de-
scribed by Eq. 4, and labeled by l) are coupled via weak
Josephson coupling of the form t

∑

l,n=1,2 b
∗
n,lbn,l+1. Suf-

ficiently near the quantum critical point at h = hc such
an interlayer coupling t is always relevant, and the system
unavoidably becomes three dimensional. In this dilute
3D limit ρb(T ) to the leading order in x equals the con-
densate of the non-interacting system. Setting β1,2 = 0
one finds ρb(T ) = ρb(0) − TF (h/2T, t/T 2), where

F (u, v) =

∫ 1

0

dz

∫ ∞

0

dy
nb(A− u) + nb(A+ u)

8πA
, (9)

with nb(x) = (ex− 1)−1, and A2 = u2 + y+ v sin2(πz/2).
For h ≪ t1/2 then: a) F ≈ (1.078/π2)(hT/t)1/2 for
T ≪ h, b) F ≈ T/(π2t1/2) for h ≪ T ≪ t1/2, and c)
F ≈ ln(T/t1/2)/(2π) for t1/2 ≪ T . For t1/2 ≪ ρb(0),
therefore, t1/2 ≪ Tc ≪ ρb(0), and there exists a wide re-
gion of temperatures where ρb(T ) behaves approximately
linearly with temperature, as in Fig. 1. The superfluid
response in the strongly underdoped regime is thus de-
termined primarily by the bosonic component, while the
quasiparticles are found to dominate only below the tem-
peratures ∼ x4. At higher dopings, however, the situa-
tion gradually becomes inverted, and the quasiparticle
term should take over in the overdoped regime.

Integrating ~v before fermions in Eq. 7 would lead to
ρb(T )/(K+ρb(T )) ∼ x as the Fermi liquid ‘charge renor-
malization’ [8]. The external electromagnetic field there-
fore continuously decouples from quasiparticles with un-
derdoping, in accord with the recent report of no effect
of an external magnetic field on the thermal conductivity
of the severely underdoped YBCO [12].

Let us turn to the non-superconducting phase of L
next. For h < hc, 〈b1〉 = 〈b2〉 = 0 (or 〈Φ1〉 = 〈Φ2〉 6= 0),
and the bosons are in the incompressible phase. The
integration over the bosons then yields

LΦ → Kµ

2
(vµ+Aµ)

2+
(ǫµνρ∂νvρ)

2

2mb
+

(ǫµνρ∂νaρ)
2

2mb
, (10)

to quadratic order, where m2
b ∼ α + O(β1,2). At

low energies one may still write L = Lsp + Lch, but
now with Lsp as the three dimensional quantum elec-
trodynamics (QED3). Quasiparticles interact via long-
range gauge interaction and cease to be sharp exci-
tations [7]. Furthermore, the dynamical gap genera-
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tion in the QED3 corresponds to antiferromagnetic or-
dering, with the staggered magnetization (or the gap)

∼ mb exp(−2π/
√

(Nc/NΨ) − 1) ≈ 10−3mb, assuming
Nc ≈ 3 [6]. Such a small nodal gap has recently been
claimed to be observed in number of underdoped cuprates
in the ARPES measurements [24]. Lch, on the other
hand, after a Gaussian integration over vµ and to the
leading order in derivatives becomes

Lch → (ǫµνρ∂νAρ)
2

2mb
+
iǫµνρ∂νJρǫµαβ∂αAβ

Kµmb
+

J2
µ

2Kµ
. (11)

The last term is still irrelevant and may be dropped. The
first term, more importantly, implies that the system is
an insulator with a charge gap ∼ mb. Finally, the sec-
ond term after a partial integration may be rewritten
as ∼ Jµǫµνρ∂νBρ, where Bρ = ǫρµν∂µAν is the exter-
nal magnetic field. A uniform magnetic field therefore
becomes completely decoupled in the insulating state.
Since the lifetime of fermions in the insulator is inversely
proportional to the above staggered magnetization [6],
and thus long near the transition, thermal conductivity
can change only little with the transition into the insula-
tor. These observations may explain why a high magnetic
field is found to have no effect on, still linear in temper-
ature, thermal conductivity of even a weakly insulating

YBCO [12].
It is noteworthy that L also has a metastable state for

h > hc, with 〈b1〉 = 0, and 2|〈b2〉|2 = (h2−h2
c)/(β1 +β2).

In this state LΦ → ρb((vµ + aµ)
2 − i2h(v0 + a0))/2, to

quadratic order. Although ρb 6= 0, the full system is
then actually a metal, since fermions acquire back their
electromagnetic charge and form four hole pockets with
a small Fermi surface, ∼ h.

In conclusion, the effective theory L predicts a
weakly fluctuating BCS superconductor at large dopings,
strongly phase-fluctuating superconductor in the pseudo-
gap, low-doping regime, and finally a transition into the
Mott insulator with likely antiferromagnetic ordering at
x = 0. Superfluid density at low dopings approaches
the form of a Bose condensate in a strongly anisotropic
3D Bose gas, and is approximately linear over most of the
temperature range. The inclusion of long-range Coulomb
interaction may be expected to localize bosons at small
x, and thus extend the insulating phase to finite dopings.
At large dopings, on the other hand, the pair-breaking ef-
fect of disorder should finally produce the usual metallic
state with a full Fermi surface [25].
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